Как выбрать автоматический выключатель для трехфазного двигателя: правильный подбор

Интересуетесь защитой электродвигателя? Узнайте, как правильно подобрать автомат защиты для трехфазного двигателя. На нашем портале вы найдете полезные советы о том, как выбрать автоматический выключатель, обеспечивающий безопасность и эффективную работу вашего оборудования.

Автоматы защиты двигателей, или по другому мотор-автоматы, предназначены в первую очередь для защиты электродвигателей от перегрева и последствий короткого замыкания, а также могут использоваться в качестве основного или аварийного выключателя. То есть по сути они совмещают в одном корпусе два устройства — автоматический выключатель и тепловое реле.

Ранее, до того как стали повсеместно применяться мотор-автоматы, для защиты двигателей использовались тепловые реле в паре с контактором.

По такой схеме тепловое реле, при превышении двигателем потребляемого тока нагрузки, размыкает цепь катушки контактора, отключая его силовые контакты и таким образом защищая двигатель. Схема рабочая, проверенная, но не лишенная недостатков. В первую очередь к ним стоит отнести неспособность тепловых реле защитить от КЗ, поэтому необходимо дополнительно использовать автоматические выключатели. Да и габариты такой конструкции из контактора и теплового реле получаются достаточно большими.

Поэтому с появлением автоматов защиты двигателей, тепловые реле стали отходить на второй план и на данный момент, их применение довольно ограничено.

Стоит сразу сказать, что по своим характеристикам, автоматы защиты двигателей несколько отличаются от обычных автоматических выключателей. В первую очередь тем, что:

  1. Учитываются время-токовые характеристики. При запуске двигателя пусковой ток может значительно превышать номинальный ток двигателя. Если точнее, то пусковой ток можно рассчитать, зная номинальный ток двигателя и величину кратности пускового тока Кп ( коэффициент кратности пускового тока к номинальному значению — Iпуск/Iном). Данная характеристика указывается в технических характеристиках, на шильде двигателя она отсутствует. I пуск = Iн х Кп. Например, при номинальном токе двигателя 20 А и кратности пускового тока 6, пусковой ток будет составлять 120 А. При таком токе обычный автоматический выключатель с время-токовой характеристикой B (ток отключения электромагнитной защиты от 3·In до 5·In, где In — номинальный ток) или С (от 5·In до 10·In) может отключится по электромагнитной защите. Автоматы защиты двигателей имеют уставку срабатывания электромагнитного расцепителя в зависимости от номинала, составляющую от 7,5 до 17,5 In.
  2. Все мотор-автоматы имеют температурную компенсацию (примерно от -25 до +60 °C) для того, чтобы исключить влияние внешней температуры на работу автомата, так как при изменении окружающей температуры может изменятся уставка теплового расцепителя, что может в свою очередь привести к ложным срабатываниям.
  3. Предельная отключающая способность (максимальный ток КЗ, при котором аппарат способен отключить нагрузку) автоматов защиты двигателя значительно выше (25-100кА), чем у стандартных автоматических выключателей — 4,5 — 6кА.
  4. Регулируемая настройка теплового расцепителя, в зависимости от номинала двигателя.

Расчет автомата для электродвигателя

Еще недавно для защиты электрических моторов использовалась следующая схема: внутри пускателя устанавливался тепловой регулятор, подключенный последовательно с контактором. Этот механизм работал таким образом. Когда через реле в течение длительного времени проходил ток большой величины, происходил нагрев установленной в нем биметаллической пластины, которая, изгибаясь, прерывала контакторную цепь. Если превышение установленной нагрузки было кратковременным (как бывает при запуске двигателя), пластинка не успевала нагреться и вызвать срабатывание автомата.

Внутреннее устройство автомата защиты двигателя на видео:

Главным минусом такой схемы было то, что она не спасала агрегат от скачков напряжения, а также дисбаланса фаз. Сейчас защита электрических силовых установок обеспечивается более точными и современными устройствами, о которых мы поговорим чуть позже. А теперь перейдем к вопросу о том, как производится расчет автомата, который нужно установить в цепь электромотора.

Чтобы подобрать защитный автоматический выключатель для электроустановки, необходимо знать его времятоковую характеристику, а также категорию. Времятоковая характеристика от номинального тока, на который рассчитан АВ, не зависит.

Чтобы автоматический выключатель не срабатывал каждый раз при запуске мотора, величина пускового тока не должна быть больше той, которая вызывает моментальное срабатывание аппарата (отсечка). Соотношение тока запуска и номинала прописывается в паспорте оборудования, максимально допустимое – 7/1.

Производя расчет автомата практически, следует использовать коэффициент надежности, обозначаемый символом Kн. Если номинальный ток устройства не превышает 100А, то величина Kн составляет 1,4; для больших значений она равна 1,25. Исходя из этого, значение тока отсечки определяется по формуле Iотс ≥ Kн х Iпуск. Автоматический выключатель выбираем в соответствии с рассчитанными параметрами.

Еще одна величина, которую необходимо учитывать при подборе, когда автомат монтируется в электрощитке или специальном шкафу – температурный коэффициент (Кт). Это значение составляет 0,85, и номинальный ток защитного устройства при подборе следует умножать на него (In/Кт).

Выбор автомата защиты

В случае прямого запуска, когда двигатель включается в работу с помощью мотор-автомата и контактора, необходимо в первую очередь знать его мощность. Эту информацию можно найти либо в технических характеристиках на двигатель, либо в паспортных данных, которые указаны на шильде.

Следующим шагом подбираем автомат, исходя из номинальной мощности двигателя. У различных фирм-производителей можно найти таблицы характеристик, где указаны номинальный рабочий ток и диапазон регулировки автоматов защиты в зависимости от мощности двигателя. В частности, на рисунке ниже приведена таблица соответствия автоматов защиты двигателей компании Allen Bradley.

И последним этапом выставляем необходимый ток отключения при помощи регулятора диапазона. Обычно указывается, что он должен быть больше или равен номинальному току электродвигателя. Но желательно, чтобы ток срабатывания защиты превышал на 10-20% номинальный ток двигателя.

То есть в случае, если номинальный ток двигателя составляет например 10 А, умножаем это значение на 1,1. Получаем 11 А. Это значение тока и выставляем регулятором.

И еще хотел сказать пару слов о конструктивном исполнении мотор автоматов. В первую очередь следует отметить, что по способу управления существует два типа автоматов — кнопочные и с поворотным выключателем. Также клеммы могут быть либо винтовые, либо с пружинным контактом ( применяются для двигателей, мощностью до 2 кВт). Можно еще отметить наличие кнопки Тест на лицевой стороне корпуса, позволяющей имитировать срабатывание защиты автомата для проверки его работоспособности.

И в заключении хотел отметить, что эксплуатация двигателей без защитных устройств часто приводит к их выходу из строя, в следствии перегрузки, обрыва фазы, скачков напряжения и т.д. А это в свою очередь приводит к финансовым затратам, простою оборудования. Поэтому автоматы защиты двигателей являются необходимым элементом и не стоит на них экономить, тем более, что цены на них на данный момент вполне приемлемые.

Схемы подключения

После того как промежуточное реле было установлено в электрический шкаф, следует осуществить его подключение в электрическую схему. Для этого применяются контакты самой катушки и непосредственные контактные элементы. Реле имеет, как правило, несколько пар контактов NO нормально открытые и NC нормально закрытые. Нормальным положением считается отсутствие подачи сигнала на катушку. Так как катушка не обладает полярностью, то подключение контактов осуществляется произвольно.

Устанавливается такой аппарат в схемах управления и автоматики. Располагается между исполнительным устройством (например, контактор) и источником задания. На рисунке изображена электрическая схема приспособления:

На картинке изображено промежуточное реле без подачи напряжения. Если его подать, то контакты переключатся. Напряжение в катушке может быть различное: 220, 24 и 12 вольт.

Как подключить приспособление указано на рисунке ниже:

В некоторых случаях реле промежуточного типа используется как контактор, тогда схема установки будет выглядеть следующим образом:

Как видно, промежуточное реле обладает тремя группами контактов, которые управляют нагрузкой и одной группой для удержания тока в катушке. Можно установить дополнительно контактор, тогда устройство подключается сначала к контактору.

Также данный аппарат можно подключать к датчику движения. Благодаря ему, к системе датчика движения есть возможность подключать несколько мощных ламп. Монтаж происходит следующим образом: обмотка приспособления подключается к датчику, а силовой контакт переключает нагрузку в системе светильников. Как установить такой датчик, показано ниже:

Еще один вариант установки электронного пускателя — к терморегулятору. Схема изображена на картинке (нажмите, чтобы увеличить):

В этом случае подключение терморегулятора и пускателя производится в последовательном порядке к первой фазе и нулевому проводу (на схеме они обозначаются как Т1 и К1 соответственно). Монтаж остальных контактов пускателя осуществляется равномерно между другими фазами.

Напоследок рекомендуем просмотреть полезное видео по теме:

https://youtube.com/watch?v=d6BA3PFlwCU

Вот и все, что хотелось рассказать вам о том, как правильно подключить данный аппарат. Надеемся, предоставленная видео инструкция и схемы подключения промежуточного реле были для вас полезными!

Электродвигатель 15 кВт ток

Существует множество разновидностей двигателей мощностью 15 кВт ток, но все они имеют различные характеристики. Рассмотрим примеры таких двигателей.

Самыми распространёнными являются вот такие образцы движков:

  • Электродвигатель асинхронный 4АМ160S4 15/1460 380-660В;
  • Электродвигатель 15 квт 1500 об мин;
  • Электродвигатель 15кВт на 3000 об мин АИР160S2 и 15 кВт на 1500 АИР160S4;
  • Электродвигатель АИР160S2 15,0 кВт 3000 об АИР 160 S2;
  • Электродвигатель 15кВт 1000 об мин АИР160M6.

Всех объединяет две характеристики, это мощность на 15 кВт и трёхфазность, и тип двигателя – асинхронный и конечно наличие контактора. Остальные характеристики, такие как частота вращения, тип ротора и марка все отличаются. Электродвигатели такого типа предназначены для выполнения работ от сети с переменным током частоты 50 Гц и производятся на такие номинальные напряжения:

  • 220 В;
  • 380 В/220 В;
  • 380 В;
  • 660 В;
  • 380 В/660 В.

Еще варианты подбора и информации об автоматах для электродвигателей смотрите в видео на соседней вкладке.

Автоматические выключатели пуска двигателя серии АПД-32 и АПД-80

Автоматические выключатели пуска двигателя серии АПД-32 и АПД-80 с термомагнитным расцепителем специально предназначены для коммутаций цепей переменного тока напряжением до 690 В частотой 50/60 Гц, а также для управления и защиты трехфазных асинхронных двигателей от перегрузки, обрыва фазы, короткого замыкания

Преимущества автоматических выключателей АПД-32 и АПД-80

  • Высокая надежность и точность срабатывания.
  • Широкий ассортиментный ряд номинальных токов от 0,1 до 80 А.
  • Удобны в установке и эксплуатации.
  • Гарантийные обязательства составляют 5 лет.

Особенности автоматических выключателей АПД-32 и АПД-80

  • Номинальный ток до 80А
  • Регулируемая уставка по току
  • Наличие дополнительных устройств

Технические характеристики магнитных автоматических выключателей АПД-32 и АПД-80

ПараметрыЗначения
АПД-32АПД-80
Номинальное рабочее напряжение, Ue, В
Номинальное напряжение изоляции,Ui, В690
Номинальное импульсное напряжение, Uimp, B6
Частота, Гц50/60
Номер серии3280
Диапазон уставок тепловых расцепителей Ir, Аот 0,16 до 32от 1,6 до 80
Кратность уставки срабатывания при коротком замыкании13 Ir
Категория примененияАС-3
Коммутационная износостойкость, кол-во циклов ВО2000
Механическая износостойкость, кол-во циклов ВО
Макс. частота коммутаций, цикл/час25

Автоматические выключатели пуска двигателя серии АПД-32

НаименованиеТок уставки теплового расцепителя, АДиапазон регулирования уставки теплового расцепителя, Ir, АМощность трехфазного электродвигателя, кВт категория АС-3, 50/60 ГцКаталожный номер
380/415 В500 В660 В
АПД-32 0,1-0,16 А0,160,1–0,160,0200,30,04apd2-0.1-0.16
АПД-32 0,16-0,25А0,250,16–0,250,060,090,11apd2-0.16-0.25
АПД-32 0,25-0,4А0,40,25–0,40,090,110,18apd2-0.25-0.4
АПД-32 0,4-0,63А0,630,4–0,630,180,250,37apd2-0.4-0.63
АПД-32 0,63-1,0А10,250,40,55apd2-0.63-1
АПД-32 1,0-1,6 А1,60,550,751,1apd2-1-1,6
АПД-32 1,6-2,5А2,51,6–2,50,751,11,5apd2-1,6-2.5
АПД-32 2,5-4А41,52,23apd2-2.5-4
АПД-32 4-6,3А6,32,234apd2-4-6,3
АПД-32 6-10 А106–1045,57,5apd2-6-10
АПД-32 9-14А149–145,57,511apd2-9-14
АПД-32 13-18А1813–187,5915apd2-13-18
АПД-32 17-23А2317–2391118,5apd2-17-23
АПД-32 20-25А2520-251115apd2-20-25
АПД-32 24-32А3224-321518,522apd2-24-32

Автоматические выключатели пуска двигателя серии АПД-80

НаименованиеТок уставки теплового расцепителя, АДиапазон регулирования уставки теплового расцепителя, Ir, АМощность трехфазного электродвигателя, кВт категория АС-3, 50/60 ГцКаталожный номер
380/415 В500 В660 В
АПД-80 16-25А2516-25111518,5apd3-16-25
АПД-80 25-40А4025-4018,52230apd3-25-40
АПД-80 40-63А6340-63303745apd3-40-63
АПД-80 56-80А8056-80374555apd3-56-80

Автоматические выключатели пуска двигателя серии АПД-32 и АПД-80 имеет следующие метки: Наши специалисты готовы оказать вам любую техническую поддержку! Консультации помогут вам в выборе продукции согласно вашим потребностям, учитывая ваши финансовые возможности. Вы можете связаться с ними по телефону. Вы так же можете прямо на сайте.Мы очень тщательно занимаемся нашим сайтом и хотим, чтобы на нем была вся продукция, но если вы не нашли интересующую Вас позицию — обратитесь к нашим менеджерам, они ответят на ваши вопросы и дадут исчерпывающую информацию об интересующих вас продуктах.
all-energo.ru

Защита электродвигателя автоматическим выключателем. Практические расчеты

Особенностью защиты электродвигателя от перегрузок и короткого замыкания является повышенный пусковой ток, который может в семь раз превышать номинальное значение. Самые сильные перегрузки на старте свойственны асинхронным двигателям с короткозамкнутым ротором, которые наиболее используемые в быту и на производстве, поэтому правильная их защита, а также предохранение электропроводки цепей питания электродвигателей являются особенно актуальными.

В бытовой электротехнике проблема с большими стартовыми токами электродвигателей решена при помощи автоматических выключателей, у которых отключение (отсечка) происходит не сразу после превышения номинального тока, а спустя некоторое время.

Данного отрезка времени, который зависит от время-токовой характеристики защитного автомата, должно хватить, чтобы вал двигателя раскрутился до рабочих оборотов, и потребление тока снизилось до номинального уровня. Но автоматические выключатели не обладают гибкостью точной настройки, поэтому для защиты электрических двигателей применяются специальные защитные устройства.

Обычный трехфазный автоматический выключатель часто используется для защиты электродвигателей

Задачи устройств для защиты электродвигателей

Бытовую электротехнику от пусковых токов большой величины в сетях обычно защищают с помощью трехфазных автоматических выключателей, срабатывающих через некоторое время после того, как величина тока превысит номинальную. Таким образом, вал мотора успевает раскрутиться до нужной скорости вращения, после чего сила потока электронов снижается. Но защитные устройства, используемые в быту, не имеют точной настройки. Поэтому выбор автоматического выключателя, позволяющего защитить асинхронный двигатель от перегрузок и сверхтоков короткого замыкания, более сложен.

Автомат защиты асинхронного двигателя

Современные автоматы для защиты двигателя нередко устанавливаются в общем корпусе с пускателями (так называются коммутационные устройства запуска мотора). Они предназначены для выполнения следующих задач:

  • Защита устройства от сверхтока, возникшего внутри мотора или в цепи подачи электропитания.
  • Предохранение силового агрегата от обрыва фазного проводника, а также дисбаланса фаз.
  • Обеспечение временной выдержки, которая необходима для того, чтобы мотор, вынужденно остановившийся в результате перегрева, успел охладиться.

Управляющая и защитная автоматика для двигателя на видео:

  • Отключение установки, если нагрузка перестала подаваться на вал.
  • Защита силового агрегата от долгих перегрузок.
  • Защита электромотора от перегрева (для выполнения этой функции внутри установки или на ее корпусе монтируются дополнительные температурные датчики).
  • Индикация рабочих режимов, а также оповещение об аварийных состояниях.

Необходимо также учитывать, что автомат для защиты электродвигателя должен быть совместим с контрольными и управляющими механизмами.

Функции защитных устройств электродвигателей

Современные защитные устройства, или другими словами, автоматы защиты электродвигателя, (мотор автоматы), часто совмещаются в одном корпусе с коммутационными аппаратами запуска (пускателями) и выполняют такие функции:

  • Защита от тока короткого замыкания в цепи питания или внутри электродвигателя;
  • Защита от длительных перегрузок, связанных с превышением механической нагрузки на валу двигателя;
  • Предохранение от асимметрии (дисбаланса) фаз, или обрыва фазного провода;
  • Тепловая защита от перегрева двигателя, осуществляемая при помощи дополнительных термодатчиков, установленных на кожухе или внутри электродвигателя;
  • Предохранение от некачественного напряжения;
  • Обеспечение выдержки времени для охлаждения двигателя после его аварийной остановки после перегрева;
  • Индикация режимов работы и аварийных состояний;
  • Опционально – отключение при исчезновении нагрузки на валу (например, для водяных насосов);
  • Совместимость с автоматическими системами контроля и управления.

Мотор автомат с ручной настройкой и автоматическим управлением

Ранее и до недавнего времени наиболее используемой схемой защиты электродвигателей было подключение в корпусе пускателя теплового реле, последовательно с контактором. Биметаллическая пластина теплового реле при длительной перегрузке нагревается и прерывает цепь самоподхвата контактора. Кратковременное превышение номинальной нагрузки при запуске мотора является недостаточным для нагрева и срабатывания биметаллической пластины. Более подробно о тепловом реле и его подключении можно прочитать в соответствующем разделе данного ресурса.

Подбор автоматического выключателя

Поскольку первые две функции могут осуществляться обычными автоматическими выключателями, многие пользователи применяют их для защиты своих электродвигателей. Основным недостатком такого способа является отсутствие защиты от дисбаланса, обрыва фаз и скачков напряжения. Выбор защитного автомата осуществляется по его время токовой характеристике и по максимальному пусковому току электродвигателя.

Чтобы правильно подобрать автоматический выключатель по категории и номинальному току, нужно изучить его время токовую характеристику, о которой подробно рассказывается на одной из страниц данного сайта. Категории автоматов (А, B, C, D) определяются соотношением тока отсечки электромагнитного расцепителя к номинальному значению. Нужно иметь в виду, что время токовая характеристика категории не зависит от номинала автоматического выключателя.

Времятоковая характеристика автоматических выключателей категории «C»

Для предотвращения ложного срабатывания автоматического выключателя при запуске электромотора необходимо, чтобы кратковременный пусковой ток (Iпуск) не превышал значение отсечки (мгновенного срабатывания, Iмгн.ср) автомата. Отношение пускового (Iпуск) и номинального тока (In) можно узнать из бирки или паспорта электродвигателя, максимальное значение Iпуск/ In=7.

Бирка двигателя с указанием мощности

Практические расчеты

На практике применяют поправочный коэффициент надежности Kн, который для автоматов с In<100A равен 1,4, а для In>100A принимают Kн=1,25. Поэтому должно соблюдаться условие Iмгн.ср ≥ Kн * Iпуск. Вначале автомат выбирают, исходя из наиболее близкого значения номинального тока автоматического выключателя IAB (указывается на корпусе) к рабочему току двигателя (In). Необходимое условие: IAB > In/Кт, где Кт = 0,85 – температурный коэффициент, если автомат устанавливается в шкафу или щитке, иначе Кт=1.

Например, имеется двигатель мощностью 5,5 кВт, η = 85%=0,85; cosφ = 0,8; Iпуск/ In = 7. Вначале нужно рассчитать In­ = Рn/(Un*√3*η*cosφ) = 5500/(380*√3*0,85*0,8) = 12,28 (А). Допустим, автомат устанавливается в шкаф, Кт = 0,85, значит In/Кт = 12,28/0,85 = 14,44 (А). Наиболее близким является автоматический выключатель на 16А, категории С, (ток мгновенного срабатывания в десять раз превышает номинальное значение).

Теперь нужно проверить условие Iмгн.ср ≥ Kн * Iпуск. Мгновенное срабатывание защитного автомата наступает при Iмгн.ср = 16*10 = 160 (A), пусковой ток Iпуск= In*7 = 12,28*7 = 85,96 (А). Умножаем на Kн (1,4) — 85,96*1,4 = 120,3 (А). Проверяем условие 160 ≥ 120,3 — это значит, что автомат выбран верно. Для упрощенных расчетов, можно принимать номинальный ток двигателя, равным удвоению его мощности, выраженной в киловаттах.

Принцип работы автомата защиты двигателей

Электромагнитный расцепитель выполнен в виде катушки соленоида, внутри которой расположен стальной сердечник с возвратной пружиной. Под действием электрического тока короткого замыкания сердечник втягивается в катушку, преодолевая сопротивление пружины и воздействует на механизм расцепления, в следствии чего контакты размыкаются.

Принцип работы тепловых расцепителей автомата такой же, как у тепловых реле. Имеется биметаллическая пластина, состоящая из двух пластин, которые сделаны из материалов с разными коэффициентами теплового расширения. Под воздействием высокой температуры, возникающей в следствии прохождения тока, превышающего номинальный, пластина начинает изгибаться, давить на механизм расцепителя и под действием пружины происходит размыкание контактов, тем самым обесточивается цепь.

Сразу после срабатывания защиты, вновь включить автомат не получится, таким образом обеспечивается выдержка времени для охлаждения двигателя после его аварийного останова.

Уставка срабатывания задается при помощи поворотного регулятора на лицевой части.

Необходимый ток уставки выставляется вращением регулятора до совмещения нужного значения тока на шкале с риской на корпусе.

Подключение к электродвигателю

Для обеспечения безопасной работы, перед частотным преобразователем желательно ставить автомат защиты. Причем на трехфазную сеть нужен трехфазный автомат, а не три отдельных однофазных. Это позволит быстро отключить сразу все фазы как при перегрузке проводки, так и при перекосе на одной из фаз. Номинал автоматов выбирают по току нагрузки.

Подключение нулевого и заземляющего проводников обязательно. Тянут их от соответствующих шин напрямую — при помощи провода требуемого сечения. Для защиты человека и контроля за состоянием изоляции, в схему желательно добавить еще УЗО (устройство защитного отключения). Его включают перед автоматом. При возникновении тока утечки, УЗО одновременно разорвет фазы и ноль, полностью обесточив схему.

Схема разрабатывается в зависимости от назначения устройства с которым работает электродвигатель

При покупке дешевых моделей преобразователей, для пуска и останова может понадобиться установка специального реле, фиксирующего контакты в нужном положении. В этом случае с выхода автомата провода подаются на реле, а с его выхода идут на частотный преобразователь. Само подключение двигателей к ПЧ происходит напрямую.

Схема подключения частотного преобразователя для двух электродвигателей

Как известно, асинхронные двигатели могут работать как с однофазным, так и с трехфазным напряжением. Перед подключением движка к преобразователю частоты, надо проверить как подключены обмотки. Они должны быть:

  • «звездой» — если напряжение на выходе ПЧ трехфазное;
  • «треугольником» — если преобразователь выдает однофазное питание.

Частотный преобразователь для электродвигателя: подключение напрямую возможно не для всех двигателей

Частотный преобразователь для электродвигателя подключается при помощи кабелей (не проводов), сечение и параметры которых соответствуют параметрам устройства. Эти данные, как и рекомендации по подключению, должны быть в паспорте прибора. Так что внимательно проштудируйте мануал. Это может спасти от многих неприятностей. Все-таки могут быть особенности.

Автоматическое включение резервного двигателя при помощи устройства плавного пуска

Устройства плавного пуска и торможения – устройства, которые позволяют ограничить пусковые токи, выполняют плавную остановку двигателя, а также включают в себя функции защиты ЭД. При малых мощностях нет смысла ставить данные устройства, можно обойтись пускателем.

Сегодня речь пойдет об автоматическом запуске резервного двигателя при остановке рабочего. Разумеется, двигатели большой мощности, которые нужно включать при помощи устройств плавного пуска.

Предположим у нас есть два вентилятора. Один из них рабочий, второй резервный, который включается автоматически при аварии основного вентилятора.

Вначале необходимо выбрать производителя устройств плавного пуска. Я остановился на Schneider Electric. Почему Schneider Electric? Потому что на него мне удалось получить всю необходимую документацию, в том числи руководство пользователя. Имея на руках необходимую информацию, можно приступать к построению схемы. Чтобы правильно сделать схему, нужно знать как работает данное устройство.

Будем использовать серию Altistart 22.

Сначала хочу привести схему из руководства пользователя.

Устройство Altistart 22 в цепи питания двигателя

Устройство Altistart 22 в цепи питания двигателя

Данная схема позволяет выполнять пуск, останов и защиту одного трехфазного асинхронного электродвигателя. За основу я взял эту схему. Ее еще называют схемой двухпроводного управления. Немного упростил ее, выбросил «ненужные» элементы и получил схему управления двумя двигателями, в которой резервный двигатель включается по аварии рабочего.

Схема автоматического включения резервного двигателя

Схема автоматического включения резервного двигателя

Итак, разберем подробно полученную схему.

Кулачковый переключатель SA1 указывает, какой двигатель будет рабочим, а какой резервным. Перед началом работы мы устанавливаем переключатель SA1 в нужное нам положение. Схему в лучшем качестве можно скачать здесь. Там же представлена коммутационная программа переключателя SA1.

Кулачковый переключатель SA2 служит для включения (отключения) автоматического режима, т.е. в выключенном состоянии в случае аварии второй двигатель не запустится. Включать резервный двигатель придется вручную.

Кнопочный пост SB служит для пуска, останова и сигнализации работы двигателя. Он состоит из кнопки с двумя замыкающими контактами и двух сигнальных ламп. Кнопка должна быть с фиксацией! В случае работы рабочего двигателя горит HL1, если же работает резервный двигатель горит HL2.

Для реализации автоматического включения резервного двигателя и использовал внутреннее реле R2 устройства плавного пуска, которое по неисправности отключается.

Контакторы КМ1 и КМ2 служат для отключения силовой нагрузи в случае аварии. При аварии контакт R2A-R2C размыкается и контактор отключается, R2B-R2C включает резервный двигатель.

Для лучшего понимания работы Altistart 22 приведу еще диаграмму работы при двухпроводном управлении.

Временная диаграмма работы двигателя

Временная диаграмма работы двигателя

Как видим из диаграммы двигатель будет находиться в рабочем состоянии в случае, если контактор КМ1 (КМ2) включится, т.е. будет подано питание на устройство плавного пуска и кнопка S1 нажата. Кнопка S1 подает напряжение +24В на вход LI2.

Стоит также отметить, что сигнальные ламы должны быть рассчитаны на напряжение 24В и потреблять ток не более 30мА, а лучше 15-20мА (по каталогу примерно столько она и потребляет). Дело в том, что внутренний источник питания 24В ограничен током 42мА. 8мА необходимо для дискретного входа LI2. В случае невозможности подключения сигнальной лампы подобным образом, схема немного усложнится.

А сейчас самое интересное

В данной схеме есть небольшая ошибка, которую очень легко устранить. Найдете…пишите, а также мне будет интересно ваше мнение по данной схеме, возможные альтернативные решения данной проблемы.

Во-первых

Из соображений безопасности эксплуатации прибора, при подключении частотника (или любого иного прибора) к сети питания, обязательно нужно устанавливать защитный автомат. Автомат устанавливается перед частотником.

При этом если частотный преобразователь подключается в сеть с трёхфазным напряжением, то установить необходимо автомат тоже трёхфазный, но с общим рычагом отключения. Это позволит отключить питание от всех фаз одновременно, если хотя бы на одной фазе будет короткое замыкание или сильная перегрузка.

Если преобразователь частоты подключается в сеть с однофазным напряжением, то соответственно применяется автомат однофазный. Но при этом, в расчет берётся ток одной фазы, умноженный на три.

При подключении трёхфазного автомата, его рабочий ток определяется током одной фазы.

Однозначно запрещено устанавливать защитный автомат в разрыв нулевого кабеля, как при однофазном подключении, так и при трёхфазном

Такое подключение только внешне выглядит идентичным (ошибочно понимать, что цепь одна и не важно, где её разрывать). На самом деле, в случае разрыва фазовых кабелей, при срабатывании автомата, питание полностью отключается и на цепях прибора не будет фаз вовсе

Это безопасно. А при срабатывании автомата с разорванным нулём, работа прибора прекратиться. Но при этом, обмотки двигателя и цепи частотника останутся под напряжением, что является нарушением правил техники безопасности и опасно для человека.

Также, не при каких условиях не разрывается заземляющий кабель. Как и нулевой, они должны быть подключены к соответствующим шинам напрямую.

Методика выбора

Чтобы правильно выбрать номинал теплового реле нам необходимо узнать его In (рабочий, номинальный ток) и уже опираясь на эти данные можно подобрать правильный диапазон уставки аппарата.

Правилами технической эксплуатации ПУЭ оговорен этот момент и допускается устанавливать до 125% от номинального тока во взрывобезопасных помещениях, и 100%, т.е. не выше номинала двигателя во взрывоопасных.

Как узнать In? Эту величину можно посмотреть в паспорте электродвигателя, табличке на корпусе.

Как видно на табличке (для увеличения нажмите на картинку) указаны два номинала 4.9А/2.8А для 220В и 380В. Согласно нашей схеме включения нужно выбрать ампераж, ориентируясь на напряжение, и по таблице подобрать реле для защиты электродвигателя с нужным диапазоном.

Для примера рассмотрим, как выбрать тепловую защиту для асинхронного двигателя АИР 80 мощностью 1.1 кВт, подключенного к трехфазной сети 380 вольт. В этом случае наш In будет 2.8А, а допустимый максимальный ток «теплушки» 3.5А (125% от In). Согласно каталогу нам подходит РТЛ 1008-2 с регулируемым диапазоном 2.5 до 4 А.

АПД25, АПД80 | Контакторы и пускатели | Низковольтная аппаратура

Назначение.

Автоматический пускатель АПД25, АПД80 электродвигателя переменного тока предназначен для защиты от перегрузки, обрыва фазы, короткого замыкания трехфазного асинхронного двигателя, а также как пускатель для нечастых коммутаций в цепи с силой тока от 0,1 до 80 А и напряжением до 690 В. Он также может использоваться как средство защиты распределительной линии, устройство переключения нагрузки и разъединитель.

Технические характеристики.

— максимальный номинальный ток Iном.мах (А): 25, 80.- номинальное рабочее напряжение Uном (В): 230 (240), 400 (415), 440, 500, 690.- номинальное напряжение по изоляции Ui (В): 690.- номинальная частота (Гц): 50/60.- степень защиты оболочки: IP20.- номинальное импульсное выдерживаемое напряжение Uimp (В): 8000.- температура окружающего воздуха: от -5°С до +40°С.- относительная влажность воздуха: не более 90% (при 25°С ± 5°С).- высота места установки: не более 2000 м над уровнем моря- угол между поверхностью установки и вертикальной плоскостью: не более 30°.- допустимая ударная нагрузка (синусоидальный импульс): 30 g (6 мс).- допустимая интенсивность вибрации: 5~150 Гц, 5 g.- расчетный режим эксплуатации: непрерывная эксплуатация- гарантийный срок 2 года

Принцип действия и особенности конструкции.

Автоматический пускатель серии АПД25, АПД80 электродвигателя переменного тока объединяет функции разъединителя, автоматического выключателя и термореле в одном электронном устройстве с функциями изоляции, защиты от перегрузки, температурной компенсации, защиты от обрыва фазы, защиты от короткого замыкания.

IEC60947-2 и IEC60947-4-1 Международной электротехнической комиссии.

Технические характеристики.

Таблица 1. Технические характеристики и режимы работы автоматов пуска двигателя серии АПД25, АПД80.

Тип автомата пуска двигателяАПД25АПД80
Род токаПеременный, 50, 60 Гц
Максимальный номинальный ток, А2580
Номинальное рабочее напряжение , В230, 400, 440, 500, 690
Номинальное напряжение изоляции, В690
Коммутационная износостойкость, циклов ВО2000
Механическая износостойкость, циклов ВО
Основная категория примененияАС-3
Вид климатического исполнения и категория размещенияУ3
Степень защитыIP20

Структура условного обозначения

Принципиальная электрическая схема.

Таблица 2. Номинальный ток автомата пуска двигателя и мощность электродвигателя, управляемого АПД.

№ п/пНоминальный токIn, AНоминальный рабочий ток (*), АСтандартная номинальная мощность трехфазного электродвигателя, кВт
АС-3, 50/60 Гц
230/240 В400 В415 В440 В500 В690 В
10,160,1–0,16
20,250,16–0,25
30,40,25–0,4
40,630,4–0,630,37
510,370,370,55
61,60,370,550,751,1
72,51,6–2,50,370,750,751,11,11,5
840,751,51,51,52,23
96,31,12,22,233,74
10106–102,24445,57,5
11149–1435,55,57,57,59
121813–1847,599911
132317–235,51111111115
142520–255,51111111518,5
(*) – диапазон регулирования установки тока термоэлемента.

Таблица 3. Технические характеристики автомата пуска двигателя и его отключающая способность при коротком замыкании.

№ п/пНоминальный токIn, AНоминальный рабочий ток (*), АПредельная отключающая способность при КЗ, номинальная отключающая способность при КЗРазрядное расстояние (мм)
230 / 240 В400 / 415 В440 В500 В690 В
Icu кАIcs%IcuIcuкАIcs%IcuIcuкАIcs%IcuIcuкАIcs%IcuIcuкАIcs%Icu
10,160,1–0,1610010010010010010010010010010040
20,250,16–0,25100100100100100100100100100100
30,40,25–0,4100100100100100100100100100100
40,630,4–0,63100100100100100100100100100100
51100100100100100100100100100100
61,6100100100100100100100100100100
72,51,6–2,5100100100100100100100100375
84100100100100100100100100375
96,31001001001005010050100375
10106–101001001001001510010100375
11149–141001001550850675375
121813–181001001550850675375
132317–23501001540650475375
142520–25501001540650475375

Габаритные и установочные размеры.

Дополнительные комплектующие к АПД25.

АПД25-РМН 110В-127В 50ГцАПД25-РМН 220В-240В 50ГцАПД25-РМН 380В-415В 50Гц
Расцепители дистанционные (шунтовые)
АПД25-РД 110В-127В 50ГцАПД25-РД 220В-240В 50ГцАПД25-РД 380В-415В 50Гц
Дополнительные контакты
АПД25-ДК-11 ( 1р+1з )АПД25-ДК-20 ( 2р )
Дополнительные контакты с индикацией об отказе
АПД25-ДКИ-0101 ( 1з+1з )АПД25-ДКИ-0110 ( 1з+1р )АПД25-ДКИ-1001 ( 1р+1з )
АПД25-ДКИ-1010 ( 1р+1р )
Приставка дополнительных контактов
АПД25-ПДК-11 ( 1р+1з )АПД25-ПДК-20 ( 2р )
Бокс защитный
АПД25-Бокс защитный IP55

www.etk-oniks.ru

Особенности защиты электрических двигателей в производственных условиях

Нередко при включении устройств, мощность которых превышает 100 кВт, напряжение в общей сети падает ниже минимального. При этом отключения рабочих силовых агрегатов не происходит, но количество их оборотов снижается. Когда напряжение восстанавливается до нормального уровня, мотор начинает заново набирать обороты. При этом его работа происходит в режиме перегрузки. Это называется самозапуском.

Самозапуск иногда становится причиной ложного срабатывания АВ. Это может произойти, когда до временного падения напряжения установка в течение длительного времени работала в обычном режиме, и биметаллическая пластина успела прогреться. В этом случае тепловой расцепитель иногда срабатывает раньше, чем напряжение нормализуется. Пример падения напряжения в электросети автомобиля на следующем видео:

Чтобы предотвратить отключение мощных заводских электромоторов при самозапуске, используется релейная защита, при которой в общую сеть включаются токовые трансформаторы. К их вторичным обмоткам подключаются защитные реле. Эти системы подбираются методом сложных расчетов. Приводить здесь мы их не будем, поскольку на производстве эту задачу выполняют штатные энергетики.

Выбрать и рассчитать автомат для электродвигателя

Существуют два распространённых способа выбора включателя для двигателя.

Итак, первый способ это рассчитать общую мощность устройств, которые будут запитаны от этого выключателя. Рассчитываем, что за приборы (телевизор, холодильник, компьютер, стиральная машинка и т.д.) будут подключены в данную цепь электротока, складываем мощность всех этих приборов и на основе этого вычисляем ток розеточной группы. При таких расчетах следует учитывать, сколько фаз в вашем раставшем электродвигателе. Например, в трехфазном, с мощностью в 4 кВт, 4 ∙ 3 = 12А, значит 12А – это сила рабочего тока. Значит, к такому электродвигателю подойдет автомат на 16А.

Второй способ рассчитать максимальную мощность приборов подключенных к автомату, это подсчитать суммарную мощность через паспорта каждого прибора. На паспортах приборов указана мощность, вот суммируем ее и определяем общую мощность. Как пример, 2кВт + 600Вт + 2100Вт = 4700Вт. Теперь просто подставляем значение в общепринятую формулу: I=W/U, где I – это мощность, W – вольтаж и U – ток в сети; I= 4700 делим на 220, вот и получаем 21,36А. Но не забываем, что стиральные машины и некоторые другие приборы имеют свои моторы, и у них есть так называемый пусковой ток, который при запуске намного больше, чем указана мощность прибора. Но производители автоматов это прекрасно знают и поэтому на выключателях есть уставка по току.

Подобрать автомат не так уж и сложно, руководствуясь следующими правилами:

Современные устройства электрозащиты силовых агрегатов

Большой популярностью пользуются модульные мотор-автоматы, представляющие собой универсальные устройства, которые успешно справляются со всеми функциями, описанными выше.

Кроме этого, с их помощью можно производить регулировку параметров отключения с высокой точностью.

Современные мотор-автоматы представлены множеством разновидностей, отличающихся друг от друга по внешнему виду, характеристикам и способу управления. Как и при подборе обычного аппарата, нужно знать величину пускового, а также номинального тока. Кроме этого, надо определиться, какие функции должно выполнять защитное устройство. Произведя нужные расчеты, можно покупать мотор-автомат. Цена этих устройств напрямую зависит от их возможностей и мощности электрического мотора.

Современная электрозащита двигателей

На рынке электротехнического оборудования все большую популярность набирает защита электродвигателя при помощи универсальных защитных устройств, так называемых мотор автоматов, которые выполняют все приведенные выше защитные функции. Данные устройства имеют модульную конструкцию и устанавливаются на DIN рейку и управляют работой силовых контакторов. Кроме приведенных функций, некоторые мотор автоматы позволяют точно регулировать различные параметры защитного отключения.

Существует много разновидностей современных мотор автоматов, которые различаются коммутируемой мощностью, набором функций, способом управления, схемой подключения и внешним видом. Чтобы выбрать подходящий аппарат защиты для конкретного двигателя, необходимо знать его параметры номинального и пускового тока, а также нужно определиться с требуемым набором защитных функций и опций.

Стоимость мотор автоматов прямо пропорциональна мощности электродвигателя и функциональным защитным возможностям. Мировыми лидерами по производству защитных мотор автоматов являются такие известные бренды: Schneider Electric, ABB, IEK, Novatek electro, и другие.

Разнообразие представленных на рынке устройств защиты электродвигателей

Приведенный на рисунке ниже автомат защиты двигателя (универсальный блок) позволяет настраивать номинальный и пусковой ток электродвигателя, допустимые пороги напряжения, может отслеживать механическую нагрузку на валу электромотора. Также осуществляется контроль за качеством изоляции обмоток электродвигателя с возможностью установки запрета на включение.

Постоянный мониторинг множества параметров работы позволяет продлить срок эксплуатации двигателя и приводимого в действие оборудования. Специальный дополнительный блок обмена информацией позволяет подключить устройство к автоматическим системам контроля.

Универсальный блок защиты

Выбор автомата защиты и контактора по мощности двигателя

Используя информацию из таблицы ниже можно по мощности трехфазного двигателя (или его номинальному току) выбрать автомат защиты двигателя и подходящий контактор. Под таблицей даны ответы на вопросы. В таблице показано наличие изделий: зеленый — в наличии, голубой — ожидается, серый — под заказ.

Автомат защиты для электродвигателя (M4)

Контактор K3

Адаптер для монтажа сборки на din-рейку

Мощность двигателя 3~400В, кВтДиапазон уставки, А Imin – IномТок мгновенного расцепителя, А (авт. выключателя)Ном. откл. способн., кА (авт. выключателя)Автомат защиты двигателяМодуль соединенияКонтакторАдаптер на DIN-рейку
0,10 – 0,162,1100M4-32T-0,16M4 32 VK1K1-09D10 230
0,060,16 – 0,253,3100M4-32T-0,25M4 32 VK1K1-09D10 230
0,090,25 – 0,45,2100M4-32T-0,4M4 32 VK1K1-09D10 230
0,180,4 – 0,638,2100M4-32T-0,63M4 32 VK1K1-09D10 230
0,250,63 – 113100M4-32T-1M4 32 VK1K1-09D10 230
0,551,0 – 1,620,8100M4-32T-1,6M4 32 VK1K1-09D10 230
0,751,6 – 2,532,5100M4-32T-2,5M4 32 VK1K1-09D10 230
1,52,5 – 452100M4-32T-4M4 32 VK1K1-09D10 230
2,24 – 678100M4-32T-6M4 32 VK1K1-09D10 230
35 – 8104100M4-32T-8M4 32 VK1K1-09D10 230
46 – 1013050M4-32T-10M4 32 VK1K1-09D10 230
5,59 – 1316950M4-32T-13M4 32 VK1K1-12D10 230
7,511 – 1722120M4-32T-17M4 32 VK3K3-18ND10 230
7,514 – 2228615M4-32T-22M4 32 VK3K3-22ND10 230
1118 – 2633815M4-32T-26M4 32 VK3K3-22ND10 230
1522 – 3241615M4-32T-32M4 32 VDK3-32A00 230M4 32 HU1
0,10 – 0,162,1100M4-32R-0,16M4 32 VK3K3-10ND10 230
0,060,16 – 0,253,3100M4-32R-0,25M4 32 VK3K3-10ND10 230
0,090,25 – 0,45,2100M4-32R-0,4M4 32 VK3K3-10ND10 230
0,180,4 – 0,638,2100M4-32R-0,63M4 32 VK3K3-10ND10 230
0,250,63 – 113100M4-32R-1M4 32 VK3K3-10ND10 230
0,551,0 – 1,620,8100M4-32R-1,6M4 32 VK3K3-10ND10 230
0,751,6 – 2,532,5100M4-32R-2,5M4 32 VK3K3-10ND10 230
1,52,5 – 452100M4-32R-4M4 32 VK3K3-10ND10 230
2,24 – 678100M4-32R-6M4 32 VK3K3-10ND10 230
35 – 8104100M4-32R-8M4 32 VK3K3-10ND10 230
46 – 10130100M4-32R-10M4 32 VK3K3-10ND10 230
5,59 – 13169100M4-32R-13M4 32 VK3K3-14ND10 230
7,511 – 1722150M4-32R-17M4 32 VK3K3-18ND10 230
7,514 – 2228650M4-32R-22M4 32 VK3K3-22ND10 230
1118 – 2633850M4-32R-26M4 32 VK3K3-22ND10 230
1522 – 3241650M4-32R-32M4 32 VDK3-32A00 230M4 32 HU1
12,518 – 2633850M4-63R-26M4 63 VDK3-32A00 230M4 63 HU1
1522 – 3241650M4-63R-32M4 63 VDK3-32A00 230M4 63 HU1
18,528 – 4052050M4-63R-40M4 63 VDK3-40A00 230M4 63 HU1
2234 – 5065050M4-63R-50M4 63 VDK3-50A00 230M4 63 HU1
3045 – 6381950M4-63R-63M4 63 VDK3-62A00 230M4 63 HU1
3045 – 6381950M4-100R-63M4 100 VDK3-62A00 230M4 100 HU1
3755 – 7597550M4-100R-75M4 100 VDK3-74A00 230M4 100 HU1
4570 – 90117050M4-100R-90K3-90A00 230
80 – 100130050M4-100R-100K3-115A00 230

Как осуществлять подбор автоматического выключателя для защиты электродвигателя:

1. Номинальный ток автоматического выключателя должен быть больше или равен номинальному току электродвигателя. 2. Пусковой ток электродвигателя обычно в 7 раз превышает номинальный (точная величина для конкретного двигателя указывается в паспорте). Т.к. автоматический выключатель не должен срабатывать при пуске двигателя, необходимо удостовериться, что величина в колонке «Ток мгновенного расцепления при к.з.» с некоторым запасом будет выше пускового тока. Пусковой ток для этих вылей вычисляем по формуле
Iном*KРАТН*КОЭФ
, где
Iном
— номинальный ток электродвигателя,
КРАТН
— кратность пускового тока электродвигателя,
КОЭФ
— поправочный коэффициент, учитывающий отклонение пускового тока от номинального, колебания напряжения (принимаем равным 1,4). 3. Номинальный ток автоматического включателя должен быть меньше предельно допустимого тока кабеля, которым осуществляется подключение электродвигателя.
Пример
: возьмем двигатель АИР90L4 мощностью 2.2кВт, в паспорте указаны: номинальный ток Iн (треугольник/звезда) (220/380В) = 8,91А / 5,16А; кратность пускового тока Iп/Iн=6,8. По номинальному току электродвигателя (5,16А) выбираем автомат защиты двигателя
M4-32T-6
c номинальным током

. Проверяем: пусковой ток 5,16*6,8*1,4=
49,12А
не превышает «Ток мгновенного расцепления при к.з.» равный
78А
. Т.О. автомат не будет срабатывать при пуске двигателя. Следовательно данный автоматический выключатель подходит для защиты указанного электродвигателя.

Вопросы и ответы:
В: В каких случаях срабатывает автомат защиты двигателя?
О: Автоматические выключатели M4 снабжены: 1. биметаллическим тепловым размыкателем, который срабатывает в зависимости от уставки по номинальному току двигателя (уставка задается регулятором на лицевой панели), данный размыкатель инерционен и срабатывает тем быстрее, чем выше ток. 2. мгновенным электромагнитным размыкателем, срабатывающим в случае к.з., порог срабатывания в 13 раз выше номинала автоматического выключателя и поэтому позволяет исключить ложные срабатывания при запуске электродвигателя.
В: Чем отличаются автоматы защиты M4-32T.. от M4-32R..?
О: Автоматы защиты M4-32
T
имеют кнопочный механизм включения, в то время как M4-32
R
оборудованы поворотным переключателем.
В: Для каких условий эксплуатации предназначены автоматы защиты двигателя M4?
Автоматические выключатели M4 подходят для любого климата. Для исключения ложных срабатываний рекомендуется избегать обдува автоматов свежим или холодным воздухом (от системы кондиционирования). Автоматы защиты M4 предназначены для функционирования в закрытых помещениях при нормальных условиях (т.е. без пыли, приводящих к коррозии паров или вредных газов). В случае использования в помещениях с отличными от нормальных условиями эксплуатации, необходимо использовать защитный корпус IP65, например,
M4 32R PFH4
(серый) или
M4 32R PFHN4
(желто-красный).
В: Где найти информацию по аксессуарам для автоматов-защиты двигателей M4?
О: См. раздел АКСЕССУАРЫ ДЛЯ МОТОР-АВТОМАТОВ BENEDICT? (блоки доп. контактов, контакты сигнализации срабатывания, расцепитель минимального напряжения, независимый расцепитель, перемычки и т.д.)
В: На какое конкретно значение должна выставляться уставка автомата защиты двигателя?
О: Уставка автоматического выключателя должна выставляться на значение номинального рабочего тока электродвигателя, указанное на шильдике (в паспорте).

Как выбрать уставку автоматического выключателя для электродвигателя

В: Возможно ли использование автоматов защиты двигателя M4 для однофазных электродвигателей?
О: Да, возможно. В этом случае подключение должно осуществляться, как показано на рисунке:
В: Какую защиту обеспечивают автоматические выключатели M4?1. Защита при возникновении токов короткого замыкания.
Мгновенный расцепитель при возникновении короткого замыкания в нагрузке, обеспечивает отключение нагрузки от сети питания, таким образом предотвращая возникновение дополнительного ущерба от действия больших токов. Автоматические выключатели M4 имеют отключающую способность 50кА и 100кА, что при напряжениях 380-400В AC является исчерпывающе надежной защитой, т.к. более высокие токи обычно не могут возникать в точке установки данного оборудования. В общем случае использование предохранителей не требуется, однако установка предохранителей дополнительно может производиться в тех случаях, когда ток короткого замкания в точке монтажа оборудования может превышать номинальную отключающую способность автоматического выключателя.
2. Защита двигателя.
Характеристики срабатывания автоматических выключателей M4 специально разработаны для защиты трехфазных электродвигателей. Поэтому автоматические выключатели для защиты электродвигателей так же могут называться ручными пускателями двигателя. Номинальный ток защищаемого двигателя выбирается регулятором на лицевой панели устройства.
3. Защита сети.
Автоматы защиты двигателя M4 так же обеспечивают защиту сети. Они соответствуют требованиям ГОСТ IEC 60947-3-2016 (Выключатели, разъединители, выключатели-разъединители и комбинации их с предохранителями) и ГОСТ IEC 60947-2-2014 (Аппаратура распределения и управления низковольтная). В соответствии с ГОСТ Р МЭК 60204-1-2007 данные автоматические выключатели могут быть использованы как основной или аварийной выключатель (следует учитывать, что в случае использования аксессуара для дверного сочленения не выполняются требования к изоляции).
Характеристики срабатывания автоматических выключателей M4 для защиты электродвигателя:

Характерестики срабатывания автоматических выключателей M4 для защиты электродвигателя

Какие схемы включения трехфазного асинхронного двигателя в однофазную сеть получили наибольшее применение?


В однофазных электрических сетях трехфазный асинхронный двигатель может быть включен с использованием трех различных схем: Дельта-схема, Зета-схема, и конечный катушечный стабилизатор.

  • Дельта-схема использует только три фазы и не использует нулевую проводник, поэтому она проста в установке и недорога в эксплуатации.

  • Зета-схема использует три фазы, а также нулевой проводник, что позволяет уменьшить время наработки двигателя. Однако, такая схема несколько более сложная в установке и дороже в эксплуатации, чем дельта-схема.

  • Конечный катушечный стабилизатор использует три фазы, а также нулевой проводник, и обеспечивает высокую эффективность и стабильную работу двигателя

Одним из самых распространенных вариантов является включение трехфазного асинхронного двигателя в однофазную сеть с помощью компенсатора. Это позволяет обеспечить стабильную работу двигателя, предотвратить его перегрев и протечку тока. Однако, необходимо учитывать, что для работы компенсатора необходим дополнительный источник питания. Также существуют и другие схемы, такие как включение через трансформатор или специальный преобразователь частоты, однако их применение зависит от конкретных условий и требований к системе.


Добавить комментарий